Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data
نویسندگان
چکیده
In this study we explored the potential of multi-temporal IRS P6 (Resourcesat) Advanced Wide Field Sensor (AWiFS) data for mapping of LULC for Delhi, India. The study presents the result of a decision tree classification of seasonal composite data (three seasons). The study has identified 13 classes with description of cropping pattern namely, double crops, kharif, rabi and zaid from 56 m spatial resolution AWiFS data. Delhi has a diverse range of land use predominantly mosaic of built-up. More than half of the area is urban settlement. Results indicate that the temporal data set with a good definition of training sites can result in good overall accuracy (=91.81) as well as individual classification accuracies (producers accuracy P76.92 and users accuracy P60). It is evident that AWiFS data can be used to provide timely and detailed LULC maps with limited ancillary data. The AWiFS derived maps could be very useful as input to biogeochemical models that require timely estimation of LULC patterns. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Land Cover Classification Using IRS-1D Data and a Decision Tree Classifier
Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...
متن کاملMapping Soil Organic Carbon Using IRS-AWIFS Satellite Imagery (Case Study: Dehaghan Rangeland, Isfahan, IRAN)
Soil organic matter has positive consequences eht rof quality and productivityof soil and also environment, agricultural and biological sustainability and conservation ofbiodiversity and soil. Organic matter plays an important role in the physical and chemicalprocesses of soil and thus, it is of a great effect on the spectral characteristics of soil. Thisstudy was done in order to develop the m...
متن کاملData Mining Techniques for Land Use Land Cover Classification Using Multi-temporal Awifs Data
The present study addresses the attempt made to explore the temporal (5-day revisit) and spatial resolution (56m) potential of AWiFS sensor aboard IRS-P6 to generate the land use land cover information using decision tree classification technique using See 5 data mining algorithm. The results obtained after two annual cycles and issues related to digital classification of temporal satellite dat...
متن کاملIRS-1C image data applications for land use/land cover mapping in Zagros region, Case study: Ilam watershed, West of Iran
In land use planning, mapping the present land use / land cover situation is a necessary tool for determining the current condition and for identifying land use trends. In this study, in order to provide a land use/ land cover map for Ilam watershed, the IRS-1C image data from 25th April 2006 were used. Initial qualitative evaluation on data showed no significant radiometric error. Ortho-rectif...
متن کاملInfluence of Land Use Land Cover on Cyclone Track Prediction – A Study During Aila Cyclone
Land-surface processes are one of the important drivers for weather and climate systems over the tropics. Realistic representation of land surface processes in mesoscale models over the region will help accurate simulation of numerical forecasts. The present study examines the influence of Land Use/ Land Cover Change (LULC) on the forecasting of cyclone intensity and track prediction using Meso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011